Endophytic Bacterium-Triggered Reactive Oxygen Species Directly Increase Oxygenous Sesquiterpenoid Content and Diversity in Atractylodes lancea.

نویسندگان

  • Jia-Yu Zhou
  • Jie Yuan
  • Xia Li
  • Yi-Fan Ning
  • Chuan-Chao Dai
چکیده

Oxygenous terpenoids are active components of many medicinal plants. However, current studies that have focused on enzymatic oxidation reactions cannot comprehensively clarify the mechanisms of oxygenous terpenoid synthesis and diversity. This study shows that an endophytic bacterium can trigger the generation of reactive oxygen species (ROS) that directly increase oxygenous sesquiterpenoid content and diversity in Atractylodes lancea. A. lancea is a famous but endangered Chinese medicinal plant that contains abundant oxygenous sesquiterpenoids. Geo-authentic A. lancea produces a wider range and a greater abundance of oxygenous sesquiterpenoids than the cultivated herb. Our previous studies have shown the mechanisms behind endophytic promotion of the production of sesquiterpenoid hydrocarbon scaffolds; however, how endophytes promote the formation of oxygenous sesquiterpenoids and their diversity is unclear. After colonization by Pseudomonas fluorescens ALEB7B, oxidative burst and oxygenous sesquiterpenoid accumulation in A. lancea occur synchronously. Treatment with exogenous hydrogen peroxide (H2O2) or singlet oxygen induces oxidative burst and promotes oxygenous sesquiterpenoid accumulation in planta. Conversely, pretreatment of plantlets with the ROS scavenger ascorbic acid significantly inhibits the oxidative burst and oxygenous sesquiterpenoid accumulation induced by P. fluorescens ALEB7B. Further in vitro oxidation experiments show that several oxygenous sesquiterpenoids can be obtained from direct oxidation caused by H2O2 or singlet oxygen. In summary, this study demonstrates that endophytic bacterium-triggered ROS can directly oxidize oxygen-free sesquiterpenoids and increase the oxygenous sesquiterpenoid content and diversity in A. lancea, providing a novel explanation of the mechanisms of oxygenous terpenoid synthesis in planta and an essential complementarity to enzymatic oxidation reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Mechanism of Ethylene Signaling Induced by Endophytic Fungus Gilmaniella sp. AL12 Mediating Sesquiterpenoids Biosynthesis in Atractylodes lancea

Ethylene, the first known gaseous phytohormone, is involved in plant growth, development as well as responses to environmental signals. However, limited information is available on the role of ethylene in endophytic fungi induced secondary metabolites biosynthesis. Atractylodes lancea is a traditional Chinese herb, and its quality depends on the main active compounds sesquiterpenoids. This work...

متن کامل

Biol. Pharm. Bull. 29(2) 315—320 (2006)

positae, are perennial herbs distributed in East Asia. Their dried rhizomes have been used as crude drugs mainly for the treatment of stomach disorders and for their diuretic properties in Chinese and Japanese traditional medicines. Four species of Atractylodes frequently used as crude drugs are prescribed in the Chinese and the Japanese Pharmacopoeias: Atractylodes japonica KOIDZUMI ex KITAMUR...

متن کامل

A novel exopolysaccharide elicitor from endophytic fungus Gilmaniella sp. AL12 on volatile oils accumulation in Atractylodes lancea

Endophytes and plants can establish specific long-term symbiosis through the accumulation of secondary metabolites. Previous studies have shown that the endophytic fungus Gilmaniella sp. AL12 can stimulate Atractylodes lancea to produce volatile oils. The purpose of this report is to investigate key factors involved in the stimulation of A. lancea by AL12 and reveal the mechanism. We identified...

متن کامل

The Transcript Profile of a Traditional Chinese Medicine, Atractylodes lancea, Revealing Its Sesquiterpenoid Biosynthesis of the Major Active Components.

Atractylodes lancea (Thunb.) DC., named "Cangzhu" in China, which belongs to the Asteraceae family. In some countries of Southeast Asia (China, Thailand, Korea, Japan etc.) its rhizome, commonly called rhizoma atractylodis, is used to treat many diseases as it contains a variety of sesquiterpenoids and other components of medicinal importance. Despite its medicinal value, the information of the...

متن کامل

Molecular Systematics of Genus Atractylodes (Compositae, Cardueae): Evidence from Internal Transcribed Spacer (ITS) and trnL-F Sequences

To determine the evolutionary relationships among all members of the genus Atractylodes (Compositae, Cardueae), we conducted molecular phylogenetic analyses of one nuclear DNA (nrDNA) region (internal transcribed spacer, ITS) and one chloroplast DNA (cpDNA) region (intergenic spacer region of trnL-F). In ITS and ITS + trnL-F trees, all members of Atractylodes form a monophyletic clade. Atractyl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 82 5  شماره 

صفحات  -

تاریخ انتشار 2015